
Here in this section, we will see how to install docker and use the docker to create microservice
API using flask.

Installation
Installation of Nginx on Ubuntu
Nginx with Let's Encrypt

Creating Docker Image
Flask Docker Image

Reverse Proxy for Windows Servers
Reverse Proxy

Docker

Installation

Installation

Nginx is one of the most popular web servers in the world and is responsible for hosting some of
the largest and highest-traffic sites on the internet. It is more resource-friendly than Apache in
most cases and can be used as a web server or reverse proxy.
In this guide, we’ll explain how to install Nginx on your Ubuntu 18.04 server and use that as a
reverse proxy for microservices created in flask and other applications.

Before you begin this guide, you should have the following:
An Ubuntu 18.04 server and a regular, non-root user with sudo privileges. Additionally, you
will need to enable a basic firewall to block non-essential ports. You can learn how to
configure a regular user account and set up a firewall by following our initial server setup
guide for Ubuntu 18.04.

You can install it using the apt packaging system.

Update your local package index:

Installation of Nginx on
Ubuntu
Introduction

Prerequisites

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04

Step 1 – Installing Nginx

sudo apt update

https://www.digitalocean.com/community/tutorials/initial-server-setup-with-ubuntu-18-04

permitting traffic on port 80 :

Verify the change:

Finally access your website using your localIP address.

You should see the default Nginx landing page:

image-1613123355266.png

Image not found or type unknown

sudo apt install nginx

Step 2 – Adjusting the Firewall
sudo ufw app list

Output

 Available applications:

 Nginx Full

 Nginx HTTP

 Nginx HTTPS

 OpenSSH

sudo ufw allow 'Nginx HTTP'

Output

Status: active

To 				Action 		From

-- 				------ 		----

OpenSSH 		ALLOW 		Anywhere

Nginx HTTP 		ALLOW 		Anywhere

OpenSSH (v6) 	ALLOW 		Anywhere (v6)

Nginx HTTP (v6) ALLOW 		Anywhere (v6)

Step 3 – Checking your Web Server
systemctl status nginx

http://your_server_ip

https://docker2.auto-boxe.com/book/uploads/images/gallery/2021-02/image-1613123355266.png

Now you have installed Ngix server on your Ubuntu. Now you can do the following steps.

1. Server Blocking which I will explain in other chapter.
2. Install Letsencrypt for Https Access.
3. Use this as reverse proxy for your existing webservice such as flask etc..
4. Host your website in Ngix.

Conclusion

Installation

In this tutorial we will discuss about installing certbot on ubuntu to install Let's Encrypt SSL on to
your ubuntu server.

Before we start you need to make sure you have followings:

1. Your own domain for example (www.example.com)
2. DNS management credentials.
3. Update A records in DNS, your A records should look like below.

1. A --- > www.example.com ---> 103.x.x.x (your public IP)
2. A --- > example.com ---> 103.x.x.x (your public IP)

Let's Encrypt can be installed for the subdomain to. I have personally tried that and it was working
fine.

In case you want to do it for subdomain your A records should look like below.

1. A ---> subdomain.example.com --- > 103.x.x.x (your public IP)

We will be using Certbot to install Let's Encrypt, Lets start by adding the repository.

First, add the repository:

Nginx with Let's Encrypt
Introduction

Prerequisites

Step 1 — Installing Certbot

sudo add-apt-repository ppa:certbot/certbot

http://www.example.com
http://www.example.com

Install Certbot’s Nginx package with apt :

Now Certbot is ready, before we proceed we need to do some configuration on Nginx server
default file.

Open the Nginx default website file.

sudo apt install python-certbot-nginx

sudo nano /etc/nginx/sites-available/default

Creating Docker Image

Creating Docker Image

Please note use lowercase for all the folder names. In my case I have created a folder "DOCKER"
on my folder where all my docker images will be created.

Take the correct container id and stop it

Remove the container

Build the container using container build command

Run the container & expose port to use it in the Nginx reverse proxy.

Flask Docker Image
Introduction

Go to /home/snk/dockers/

Create a directory with the application name for example allclaims

Place *.py , Dockerfile and Requirement.txt

“

Step 1 - Stop Docker Container (If Any)
docker container ps

docker container stop Name_of_the_container

docker container rm Name_of_the_container

docker build -t name_of_the_image:latest .

Use the default site file, in case if you don't use the server blocking, else use the respective server
file in Nginx server.

Add the location with application name and its corresponding dockers port and path as shown
bellow.

Restart the Nginx server to changes to reflect.

docker run -it -d -p 5000:5000 name_of_the_image

Step 2 - Proxy pass in Nginx server

sudo nano /etc/nginx/sites-available/default

 location /allclaims/ {

 proxy_pass http://103.4.6.220:5000/;

 }

sudo systemctl reload nginx

Information

Most of the time when you run docker images inside the proxy you might end
up with improper CSS or site load, in that case always use environment
variable of APP_URL, check each application for more information on the same

 Example while running the docker use the following command along with run
statement.

" -e APP_URL=https://docker2.auto-boxe.com/book "

“

Reverse Proxy for Windows
Servers

Reverse Proxy for Windows Servers

To do reserve proxy for window server we need to do the following steps.

Create a website, in our case it is STAGE, with in the stage we created Application called Jaya-
stage.

Please note that this application name is very important we need to create reverse proxy with the
same name in Nginx server in ubuntu.

Next step to create a reverse proxy configuration on Nginx server as shown below.

Reverse Proxy

https://docker2.auto-boxe.com/book/uploads/images/gallery/2021-04/image-1619422827033.png

https://docker2.auto-boxe.com/jaya-stage/

ALLCLAIMS STAGElocation /jaya-stage/ {

	proxy_pass "http://192.168.204.18:9000/jaya-stage/";

 add_header Strict-Transport-Security "max-age=31536000; includeSubDomains" always;

 add_header X-Frame-Options SAMEORIGIN;

 add_header X-Content-Type-Options nosniff;

 add_header X-XSS-Protection "1; mode=block";c

 lient_max_body_size 2m;client_body_timeout 120s; # Default is 60, May need to be

increased for very large uploads

 }

https://docker2.auto-boxe.com/book/uploads/images/gallery/2021-04/image-1619423005829.png

